Effectiveness of Mango Leaf Extract (Mangifera indica L) on Healing of Second Level Cut Wound in Male White Mice (Mus musculus)

Suhatri1, Dwi Fidiyani2, Nia Azzahra3, Muslim Suardi4
* suhatri01@gmail.com
1,2,3,4Fakultas Farmasi, Universitas Kader Bangsa, Palembang, Indonesia
1Fakultas Farmasi Universitas Andalas, Padang, Indonesia
1Fakultas Farmasi, Universitas Perintis, Padang, Indonesia

Abstract

Mango leaves have several secondary metabolites which have pharmacological effects and may be used to cure cuts or other injuries. The purpose of this study was to determine the effectiveness of the mango leaf extract on wound healing in male white mice. This experimental research was carried out at the Pharmacy Laboratory, Universitas Kader Bangsa and STIK Siti Khodijah, Palembang in July to August 2021. Mango leaves were macerated using 96% ethanol. The extract obtained was prepared into the ointment at concentrations of 10, 20, and 40%. Mango leaf extract ointment, positive, and negative control were each applied twice daily. Wound length was measured using a caliper on days of 2, 4, 6, 8, 10, 12, and 14. The percentage reduction in wound length on day 14 after administration of mango leaf extract ointment 10, 20, and 40% were 14.4±2.07; 17.2±3.70 and 16.4±4.15%; respectively. While the positive control and negative control were 25.4±3.05 and 11.4±1.14%, respectively. There was a significant difference between the administration of the mango leaf extract ointment at concentrations of 20 and 40% compared to the negative control (p<0.05). The mango leaf extract is quite effective in healing Level II cut wounds.

Keywords: Bioplacenton, mango leaf extract, wound.

Korespondensi: Suhatri, Fakultas Farmasi Universitas Perintis, Padang, Indonesia
Introduction

Indonesian people have known various types of medicinal plants and their use to maintain health and treat various diseases since hundred years. Types of plants used as medicine are usually referred to as traditional medicine (Kanon, 2012). One of the plants that are efficacious as medicine is mango leaf plant (Mangifera indica L). The leaf of this plant contains secondary metabolites. Utilization of mango is still limited as fruit. The utilization of mango leaves as medicine is still not optimal.

Mango leaves contain compounds such as alkaloids, saponins, tannins, and flavonoids that can heal wounds. The largest content of the mango leaf extract is mangiferin which has been studied by several researchers. It can be used as antioxidant, analgesic, antidiabetic, antitumor, antimicrobial, and increasing stamina.

The incidence of injuries in the world throughout the year is increasing, including acute wounds or chronic wounds. In 2009, a study conducted in America stated that the prevalence of injured patients was 350 per 1000 population. The etiology of wounds in patients varies with the data obtained, in term of surgical wounds 113.3 million cases, traumatic wounds 1.6 million cases, abrasions 20.4 million cases, burns 10 million cases, and decubitus ulcers 8.5 million cases (Diligence, 2009). The prevalence of injured patients in Indonesia, according to the Ministry of Health of the Republic of Indonesia in 2013 was 8.2% with the highest number in the province of South Sulawesi, 12.8% and the highest type of wound experienced by the Indonesian population was abrasions at 70.9%. The etiology of the injury was blown away 40.9%, followed by a motorcycle accident 40.6% (Riskesdas, 2013).

Then}
was kept for 3 days and protected from sunlight, and stirred occasionally. After 3 days, the mixture was removed from the bottle and filtered with cotton, evaporated to a constant weight to obtain the mango leaf extract.

Preparation of Ointment. Formulation of the mango leaf extract ointments were as follows. Formula 1, 2, and 3 contain mango leaf extract and vaseline at the ratio of 0.5:4.5, 1:4, and 2:3, respectively.

The mango leaf extract was placed into the mortar and added vaseline step by step, grinded until homogeneous. The ointment was placed in a tightly closed container, and stored at room temperature protected from sunlight.

Alkaloid Test. Two mL of the mango leaf extract solution was added to 5 mL of 2 N HCL. The solution was then divided into 3 test tubes. The first tube was added with 3 drops of Wagner's reagent, the second tube was added with 3 drops of Dragendorff's reagent, and the third tube was added with 3 drops of Mayer's reagent. A positive test is indicated by the formation of an orange to red precipitate using the Wagner reagent, an orange precipitate using the Dragendorff's reagent, a white to yellowish precipitate using the Mayer reagent (Susilowati et al., 2018).

Flavonoid Test. Three drops the extract solution was pipetted and then dropped into a drip plate, then one drop of sulfuric acid (H2SO4) added, if the solution changes to yellow, red or brown, the sample was stated as positive for flavonoids.

Saponin Test. One mL of the mango leaf extract solution was added to 10 mL of hot water, then cooled and shaken for 10 seconds. If foam is formed for approximately 10 minutes 1-10 cm in height and does not disappear when 1 drop of 2N HCL is added, it indicates that the tested extract contains saponin.

Steroid and Terpenoid Test. Two mL of the mango leaf extract solution was added with 10 drops of glacial CH3COOH, and two drops of concentrated H2SO4. The solution was shaken gently and left for a few minutes. Steroids will give a blue or green color while terpenoids will give a red or purple color (Susilowati et al., 2018).

Tannin Test. Two mL of the mango leaf extract solution was added 3-5 drops of 1% iron (III) chloride solution, if there was a dark blue or greenish black color change, it indicated the presence of tannins (Susilowati et al., 2018).

The Treatment of Ointments. The mice were anesthetized using lidocaine. The mice’s fur around the back of the mice was shaved and swabbed with 70% alcohol. Then, an incision was made on the back of the mouse using a one mm long scalpel. Each incision was treated by applying mango leaf extract to the wound twice a day. The same procedure was performed using Bioplacenton Gel and Vaseline. The length of the wound was measured on days of 2, 4, 6, 8, 10, 12 and 14. These observations were created at 2-day intervals to evaluate physical changes of the wound area (Sumoza, 2014).

Results

The species of mango plant was stated as Mangifera indica L by the Director of the Laboratory of Mathematics and Natural Sciences, Universitas Andalas, Padang.

Tabel 1

<table>
<thead>
<tr>
<th>Phytochemical Screenig of Mangos Leaf Extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phytochemical</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Alkaloid</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
From the phytochemical screening test, it was found that the mango leaf extract was positive containing of flavonoid, saponin, tannin, and alkaloid compounds.

Tabel 2
The Average of Wound Healing Reduced Length

<table>
<thead>
<tr>
<th>Group</th>
<th>Average percentage of wound healing on day 14</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive control</td>
<td>25.4</td>
<td>3.05</td>
</tr>
<tr>
<td>Negative control</td>
<td>11.4</td>
<td>1.14</td>
</tr>
<tr>
<td>Ointment 10%</td>
<td>14.4</td>
<td>2.07</td>
</tr>
<tr>
<td>Ointment 20 %</td>
<td>17.2</td>
<td>3.70</td>
</tr>
<tr>
<td>Ointment 40 %</td>
<td>16.8</td>
<td>4.15</td>
</tr>
</tbody>
</table>

Pembahasan

It was observed that increasing of the concentration of mangoes leave extract from 10 to 20 %, the decreasing of the length of wounds significantly. But not so much difference between 20 and 40 %. There was significant difference between negative control and 20 % ointment as well as 40 % ointment. The positive control seemed to give the very short wounds compare with all of another treatment. No significant difference between 20 and 40% of mangoes leave extract.

The wound that closed quickly after treatment with positive control. Each treatment group has a different percentage of wound healing. Starting from the negative control treatment group which had the longest wound compare to the treatment using ointment at the concentration of 40, 20, 10%, and positive control. It means all of formulation gave the shorter wound compare to the negative control.

Wound observations were carried out at 2-day intervals to determine physical changes in the wound area. The occurrence of swelling and granulation in the wound. In this phase the wound is filled with fibrous inflammatory cells, collagen fibers, new capillaries, forming...
a reddish tissue with an uneven surface called granulation tissue. The rate of scab formation in each treatment group indicates the rate of wound healing.

The process of wound healing is physiologically divided into three phases, i.e. the inflammatory phase, the proliferative phase, and the maturation phase. The inflammatory phase lasts from the onset of the wound until day 3. The first thing that happens after the wound is the activation of platelets. Damaged blood vessels in the wound will cause bleeding and the body will stop it by vasoconstriction, shrinking the ends of broken blood vessels and hemostatic reactions (Sjamsuhidajat, 2010).

The proliferative phase is also called the fibroplasia phase because the fibroblast cell proliferation process is very prominent. This phase lasts from day 3 to day 14 after the injury. The maturation phase occurs after the proliferative phase finish, around day 14 and can be up to 365 days after the injury occurs and is declared to end when all inflammation has disappeared. In this phase the body tries to return everything that becomes abnormal when the wound healing process becomes normal (Maryunani, 2015).

Based on the results of the ANOVA statistical test, the data on the percentage of wounds on day 14 obtained showed a significance value of \(p < 0.05 \), which means that there was a difference in the effect of giving positive control, and negative control with mango leaf extract.

Results of observations and data analysis showed that the shrinkage of the length of the open wound occurred faster and closed in the positive control group and at a concentration of 20 and 40% had the longer average percentage in wound healing. This demonstrated that there were differences in the impact of giving the mango leaf extract on wound healing.

This effect is due to the chemical content of tannins, saponins, and flavonoids in mango leaves. The content of tannin compounds in the mango leaf extract is able to reduce tissue swelling and avoid the formation of pus on the wound surface due to pathogen invasion which can inhibit healing. The content of saponin compounds can increase the number of macrophages that migrate to the wound area, thereby increasing the production of cytokines that will activate fibroblasts in the wound tissue, then stimulate the formation of collagen which has a role in the wound healing process. The content of flavonoid compounds is believed to reduce the degree of erythema in wounds and inhibit the growth of bacteria (Liantari, 2014).

Conclusion

The mango leaf extract can cure second level cut wounds in male white mice. There was a difference in the effect of dose of mango leaf extract with a concentration of 20 and 40% on wound healing in male white mice compare to the negative control.

Referensi

Kusumawardhani, A. D. 2015. Effect of Betel Leaves Extract Ointment (Piper betle Linn) on the Number of Fibroblast in IIA Degree Burn Wound on Rat
(Rattus norvegicus) Wistar Strain

